污水處理厭氧氨氧化反應(yīng)工藝探討以及應(yīng)用
【www.wotx.net南京純水設(shè)備】厭氧氨氧化反應(yīng)(Anammox)是在缺氧條件下由厭氧氨氧化菌利用亞硝酸鹽為電子受體,將氨氮轉(zhuǎn)化為氮?dú)獾纳锓磻?yīng)過程。與傳統(tǒng)的硝化反硝化過程相比,厭氧氨氧化工藝無需外源有機(jī)物,供氧能耗、污泥產(chǎn)生量和 CO2 排放量大為減少,降低了運(yùn)行費(fèi)用,并具有可持續(xù)發(fā)展意義。本文對(duì)厭氧氨氧化的工藝原理、工藝形式、影響因素和應(yīng)用情況進(jìn)行總結(jié)與討論。
1 工藝原理
BRODA 根據(jù)熱力學(xué)計(jì)算,在 20 世紀(jì) 70 年代提出了厭氧氨氧化的存在,認(rèn)為它是自然氮循環(huán)中的一個(gè)缺失的部分。MULDER和VAN DE GRAAF在 20 世紀(jì) 90 年代中期首先對(duì)此進(jìn)行了實(shí)驗(yàn)證明,此后人們對(duì)該過程產(chǎn)生了極大的興趣。
該反應(yīng)合成細(xì)胞生物量的唯一碳源是碳酸氫鹽,表明這些細(xì)菌為化學(xué)自養(yǎng)細(xì)菌。亞硝酸鹽氧化為硝酸鹽的過程中產(chǎn)生的還原當(dāng)量(能源)用于碳的固定。厭氧氨氧化細(xì)菌對(duì)底物有很高的親和力,可以將氨氮和亞硝酸鹽的含量降至較低的水平。南京工業(yè)純水處理設(shè)備上述反應(yīng)式中的 NO2-來自于亞硝化反應(yīng)。傳統(tǒng)硝化反應(yīng)包括2個(gè)基本過程:氨氧化菌 (AOB)將NH4+氧化為 NO2-;亞硝酸鹽氧化菌(NOB)將NO2-氧化為NO3-。亞硝化反應(yīng)是通過調(diào)控,富集 AOB,抑制或淘洗 NOB,將硝化反應(yīng)控制在第 1 步,保持NO2-的累積率并使出水 ρ(NO2–N)/ρ(NH4+-N)=1~1.3。
2 工藝形式
厭氧氨氧化的工藝形式可以分為兩段式和一體式。兩段式系統(tǒng)的亞硝化和厭氧氨氧化過程分別在2 個(gè)反應(yīng)器中進(jìn)行,一體式則在同 1 個(gè)反應(yīng)器中進(jìn)行。
兩段式工藝亞硝化和厭氧氨氧化反應(yīng)容易實(shí)現(xiàn)優(yōu)化控制,亞硝化反應(yīng)器中的異養(yǎng)微生物能夠降解污水中的有機(jī)物及其他有毒有害物質(zhì),降低對(duì)厭氧氨氧化反應(yīng)的不利影響,因此系統(tǒng)運(yùn)行崩潰后容易恢復(fù)。但是亞硝化段中亞硝酸鹽累積易產(chǎn)生 FNA 抑制,且由于要將亞硝化速率和厭氧氨氧化速率進(jìn)行匹配,所以系統(tǒng)的設(shè)計(jì)較為復(fù)雜。
一體式工藝占地小,反應(yīng)器結(jié)構(gòu)簡(jiǎn)單,由于短程硝化和厭氧氨氧化反應(yīng)在同一反應(yīng)器中進(jìn)行,基質(zhì)含量較低,因此出現(xiàn)游離氨(FA)、游離亞硝酸(FNA)毒害抑制的可能性稍低一些。但是一體化工藝生物組成更復(fù)雜,NOB 在系統(tǒng)中不容易淘汰或抑制,工藝對(duì) pH、水溫更為敏感,系統(tǒng)的控制難度更大,出現(xiàn)問題后要很長(zhǎng)時(shí)間才能恢復(fù)。
3 影響因素
3.1 基質(zhì)含量和 pH
厭氧氨氧化反應(yīng)的基質(zhì)為氨和亞硝酸,二者含量過高均會(huì)對(duì)微生物產(chǎn)生抑制作用。
基質(zhì)氨對(duì) AAOB 的影響較小,只有氨的質(zhì)量濃度超過 1 g/L 才能抑制?;|(zhì)氨的抑制主要由 FA產(chǎn)生。FA 對(duì) AOB 和 NOB 均有抑制,但抑制的含量范圍不同。ANTHONISEN 等報(bào)道了質(zhì)量濃度 0.1~1.0 mg/L 的 FA 對(duì)亞硝化單胞菌屬(Nitrosomonas)有抑制作用,而質(zhì)量濃度 10~150 mg/L 的 FA 對(duì)硝化桿菌屬(Nitrobacter)有抑制作用。在亞硝化工藝中將 FA 的質(zhì)量濃度控制上述 2 個(gè)范圍之間,NOB 就會(huì)被抑制而產(chǎn)生NO2-積累。
基質(zhì)中的 FNA 對(duì) AOB 和 NOB 均有抑制,而離子態(tài)亞硝酸鹽NO2-的影響較小。FNA 對(duì) AOB 和NOB 的抑制質(zhì)量濃度為 0.01~1 mg/L,哪種細(xì)菌對(duì)FNA 具有更高的耐受性,目前的研究結(jié)果仍相互矛盾。NO2-對(duì) AAOB 的影響較大,當(dāng)NO2-的質(zhì)量濃度高于 100 mg/L 時(shí),AAOB 活性被完全抑制。
pH 一方面影響了 AOB、NOB、AAOB 等微生物的生長(zhǎng)活性,另一方面影響了NH4+和 FA 以及NO2-和 FNA 之間的化學(xué)平衡。一般而言,在中性偏堿性條件下,AOB 和 AAOB 才能表現(xiàn)出相對(duì)較高的生長(zhǎng)活性。AOB 適宜生長(zhǎng)的 pH 是 7.0~8.6,AAOB 適宜生長(zhǎng)的 pH 為 6.5~8.8。pH 較高時(shí),化學(xué)平衡向生成 FA 方向進(jìn)行;pH 較低時(shí),化學(xué)平衡向生成 FNA方向進(jìn)行。當(dāng) pH 分別大于 8.0 和低于 6.0 時(shí),FA 和FNA 在體系內(nèi)所占比例迅速增大經(jīng)計(jì)算,35 ℃水溶液中總NO2–N 的質(zhì)量濃度為 500 mg/L、pH 為 7時(shí),FNA 的質(zhì)量濃度只有 0.1 mg/L。所以當(dāng) pH 大于7 時(shí),FNA 對(duì) AOB 和 NOB 的抑制作用較為有限。
3.2 溫 度
生物硝化反應(yīng)在 5~40 ℃均可進(jìn)行,但 15 ℃為分界點(diǎn)。溫度高于 15 ℃時(shí),AOB 的生長(zhǎng)速度高于NOB,AOB 的最小泥齡小于 NOB 的最小泥齡,并且隨著溫度的升高,二者的差值將增加,所以高溫有利于 AOB 的生長(zhǎng)。在 25 ℃以上控制泥齡,可以有效地選擇 NOB。目前的工程實(shí)例通常將亞硝化過程的溫度控制在 30~35 ℃。
多數(shù)研究認(rèn)為,AAOB 的理想溫度條件為 30~40 ℃,但是自然條件下在溫度較低時(shí)也可以進(jìn)行穩(wěn)定的厭氧氨氧化反應(yīng),RYSGAARD 等指出在 -1.3 ℃時(shí),北極海底沉積物中的 AAOB 菌仍具有活性。低溫條件下反應(yīng)器中的 AAOB 菌的活性一直受到關(guān)注,一些研究結(jié)果表明,在亞硝化–厭氧氨氧化工藝系統(tǒng)中,溫度降到 20 ℃以下后都測(cè)定發(fā)現(xiàn)了 AAOB菌的活性,有些研究顯示,在10 ℃甚至更低溫度都有可能存在穩(wěn)定的厭氧氨氧化反應(yīng)。但是也有研究指出,當(dāng)溫度降低到 15 ℃時(shí),生物膜反應(yīng)器內(nèi)開始積累NO2-,表明 AAOB 菌的活性受到了抑制。
3.3 有機(jī)物
可生物降解有機(jī)物不直接影響 AAOB,但能誘導(dǎo)反應(yīng)器內(nèi)普通異養(yǎng)菌(OHO)的生長(zhǎng)。由于 AAOB的生長(zhǎng)速率比 OHO 低得多,當(dāng)存在過量的有機(jī)碳時(shí),異養(yǎng)細(xì)菌將占據(jù)反應(yīng)器的主導(dǎo)地位,因而限制了AAOB 生長(zhǎng)的空間和底物。南京實(shí)驗(yàn)室純水處理設(shè)備通常,在一體式厭氧氨氧化工藝中,進(jìn)水可降解 COD 和總NH4+-N 的質(zhì)量濃度比需要低于 0.5。另一方面,如果進(jìn)水中含有一定含量的可降解有機(jī)物,那么出水中的硝酸鹽可以被去除,所以 TN 去除率是提高的。
3.4 DO 含量
AAOB 為嚴(yán)格厭氧菌,STROUS 等指出,在 DO含量為 0.5%~2.0%空氣飽和度時(shí),AAOB 活性被完全抑制[6]。但該抑制是可逆的,DO 消除后,AAOB 的活性可以恢復(fù)。AOB 和 NOB 都是嚴(yán)格好氧菌,當(dāng)AAOB 和 AOB 共存在系統(tǒng)中時(shí),AOB 消耗了 DO,所以即使 DO 的質(zhì)量濃度在高于 0.2 mg/L 的條件下,AAOB 也可以保持正常活性,這使得亞硝化結(jié)合厭氧氨氧化工藝的一段式系統(tǒng)成為可能。實(shí)際工藝中還利用顆粒污泥和填料富集微生物,形成 DO 內(nèi)外不同的微環(huán)境,為 AAOB 和 AOB 在系統(tǒng)中共生創(chuàng)造條件。
好氧菌 AOB 和 NOB 對(duì) DO 有競(jìng)爭(zhēng)作用,二者的 DO 半飽和系數(shù)分別為 0.74~0.99 mg/L 和 1.4~1.75 mg/L,所以 AOB 具有更好的氧親和力。在實(shí)際工藝中,通常將 DO 含量控制在較低的水平,可以使AOB 優(yōu)先獲得有限的氧,抑制 NOB 的活性。文獻(xiàn)中報(bào)道的抑制 NOB,維持 AOB 活性的臨界 DO 含量各不相同。RUIZ 等指出,臨界 DO 的質(zhì)量濃度宜控制在 1.7 mg/L 以下;而 HANAKI 等認(rèn)為,在 25 ℃時(shí)將 DO 的質(zhì)量濃度降至 0.5 mg/L,AOB 沒有受到明顯影響,而 NOB 活性下降。除了直接控制 DO含量,也可以利用生物膜和顆粒污泥內(nèi)存在傳質(zhì)阻力,間接限制 DO 含量,抑制 NOB。
3.5 金屬離子
鐵是細(xì)胞血紅素的合成元素,對(duì) AAOB 的影響較大,相對(duì) Fe3+,Fe2+更容易促進(jìn) AAOB 的生長(zhǎng),提高其活性。Fe2+還可以替代氨作為電子供體,Fe3+、錳離子也被用作厭氧氨氧化代謝中的電子受體。在多種電子受體和電子供體存在的代謝體系下,AAOB 菌面臨的競(jìng)爭(zhēng)壓力較小,厭氧氨氧化過程也更具穩(wěn)定性。Ca2+和 Mg2+是微生物的細(xì)胞組分,Mg2+、Cu2+、Zn2+是酶的激活劑,能夠提高酶活性來促進(jìn)微生物的代謝。目前的研究皆證明少量的金屬離子對(duì) AAOB菌有積極影響,但是金屬離子含量過高則會(huì)對(duì) AAOB菌產(chǎn)生毒性作用。
4 微生物特征
AOB 和 NOB 廣泛分布于土壤、淡水、海洋及其他環(huán)境中。多數(shù) AOB 和 NOB 為化能自養(yǎng)型微生物,分別以氧化氨和亞硝酸鹽釋放的化學(xué)能為能源,以 CO2為唯一碳源,少數(shù)為兼性自養(yǎng)型,可同化有機(jī)物。AOB 和 NOB 形態(tài)各異,均為無芽孢的革蘭氏陰性菌,有復(fù)雜的細(xì)胞膜結(jié)構(gòu),有些借助鞭毛運(yùn)動(dòng),如 Nitrosolobus,有些無鞭毛不能運(yùn)動(dòng),如 Nitrospira。南京EDI純水處理設(shè)備一般認(rèn)為 AOB 與 NOB 之間存在共生關(guān)系。AAOB 菌是一類功能菌種,都屬于浮霉菌門,目前發(fā)現(xiàn)有 5 屬 17 種,全部為自養(yǎng)菌。其中,Brocadia、Kuenenia、Jettenia 和 Anammoxoglobus 4 個(gè)屬由污水處理系統(tǒng)中獲得,Scalindua 發(fā)現(xiàn)于自然生態(tài)系統(tǒng)中。AAOB 為革蘭氏陰性菌,呈不規(guī)則球形、卵形等,直徑 0.8~1.2 μm。AAOB 細(xì)胞壁表面有火山口狀結(jié)構(gòu),少數(shù)有菌毛。AAOB 的細(xì)胞被厭氧氨氧化體膜(Anammoxosome membrane)、細(xì)胞質(zhì)膜(Cytoplasmic membrane)、胞漿內(nèi)膜(Intracytoplasmic membrane)分隔成 3 個(gè)部分,分別為核糖細(xì)胞質(zhì)(Riboplasm)、厭氧氨氧化體(Anammoxosome),以及外室細(xì)胞質(zhì)(Paryphoplasm)。
5 工程化應(yīng)用
在厭氧氨氧化工藝的實(shí)際應(yīng)用方面,2002 年,帕克公司在鹿特丹 Dokhaven 污水處理廠建造了世界第 1 座生產(chǎn)性厭氧氨氧化反應(yīng)器,采用 SharonAnammox 系統(tǒng)處理污泥脫水液。此后,荷蘭、德國(guó)、日本、澳大利亞、瑞士和英國(guó)等地也相繼建立了共100 多座厭氧氨氧化廢水處理廠,除了污泥消化液,處理的廢水還包括垃圾滲濾液、養(yǎng)殖場(chǎng)廢水、食品廢水等。目前,實(shí)際工程應(yīng)用的厭氧氨氧化技術(shù)可以分為懸顆粒污泥、浮污泥統(tǒng)、和生物膜系統(tǒng)。
5.1 顆粒污泥系統(tǒng)
顆粒污泥系統(tǒng)的一個(gè)典型案例是帕克公司在鹿特丹建立的 Anammox 反應(yīng)器,早期的測(cè)流工藝傾向于采用兩段式系統(tǒng),所以實(shí)際運(yùn)行時(shí)該 Anammox反應(yīng)器與之前建好的亞硝化 SHARON 反應(yīng)器進(jìn)行耦合,形成了 Sharon-Anammox 反應(yīng)系統(tǒng),該系統(tǒng)的啟動(dòng)經(jīng)歷了 3.5 年。隨后帕克公司又開發(fā)了一體式Anammox 反應(yīng)器。兩段式系統(tǒng)中的厭氧氨氧化反應(yīng)器和一體式反應(yīng)器均采用上向流連續(xù)式運(yùn)行,內(nèi)置斜板沉淀池,實(shí)現(xiàn)了對(duì)污泥顆粒的截留。
目前,一體式反應(yīng)器的應(yīng)用較為普遍,反應(yīng)器內(nèi)DO 的質(zhì)量濃度控制在 1 mg/L 左右,顆粒污泥內(nèi)外形成了 DO 含量梯度,外表適宜生長(zhǎng) AOB,內(nèi)部生長(zhǎng) AAOB,密度較小的異養(yǎng)菌絮體則排到系統(tǒng)外。穩(wěn)定運(yùn)行時(shí),TN 負(fù)荷可達(dá) 4.8 kg/(m3·d)。
5.2 懸浮污泥系統(tǒng)
AOB 和 AAOB 生長(zhǎng)緩慢,世代周期長(zhǎng),在普通懸浮污泥系統(tǒng)中容易流失,所以懸浮污泥工藝常采用序批式活性污泥法反應(yīng)器(SBR)形式截留微生物。
在所有的 SBR 厭氧氨氧化技術(shù)中,80%為 DEMON工藝。南京超純水處理設(shè)備該工藝首先是在奧地利的 Strass 污水處理廠得到應(yīng)用,其核心是通過監(jiān)測(cè) pH 的變化,來調(diào)整曝氣時(shí)間,進(jìn)而調(diào)整短程硝化和厭氧氨氧化的平衡;另一方面,該工藝?yán)盟π髌髡{(diào)節(jié) AAOB 和 AOB的泥齡,微生物在離心力的作用下會(huì)被分為 2 部分,較輕質(zhì)的 AOB 從頂部溢流,較重的 AAOB 聚集在底部回流至反應(yīng)器。Strass 污水處理廠實(shí)現(xiàn)了 85%以上的自養(yǎng)脫氮效率。
采用 DEMON 工藝的污水處理廠還包括瑞士的Glarnerland 和 Thun 污水處理廠、德國(guó)的 Heidelberg和 Plettenberg 污水處理廠。目前,華盛頓 Blue Plains污水處理廠正在建設(shè)的 DEMON 工藝是全球最大的厭氧氨氧化工程,設(shè)計(jì)氮負(fù)荷為 9.072 t/d。
5.3 生物膜系統(tǒng)
目前,生物膜形式的厭氧氨氧化工藝主要有DeAmmon 和 ANITATMMox 等。其中,DeAmmon 工藝于 2001 年由 Purac 公司和 Hannover 大學(xué)聯(lián)合開發(fā),在德國(guó) Haittingen 污水處理廠首先得到應(yīng)用。工藝由 3 個(gè) MBBR 反應(yīng)池和1 個(gè)脫氣池組成,3 個(gè)反應(yīng)池可以根據(jù)需要以串聯(lián)或者并聯(lián)的方式連接,MBBR 的填充率為 40%~50%。
反應(yīng)池的每個(gè)分區(qū)都設(shè)置間歇曝氣,曝氣段和非曝氣段的時(shí)間分別為 20~50 min 和 10~20 min,具體時(shí)間通過監(jiān)測(cè)在線電導(dǎo)率實(shí)施調(diào)整。工藝對(duì) TN 的去除率達(dá) 70%~80%,實(shí)際運(yùn)行 TN 負(fù)荷為 180 kg/d。
ANITATMMox 是 Veolia 開發(fā)的厭氧氨氧化工藝,該工藝于 2011 年首先在瑞典的 Sj觟lunda 污水廠得到應(yīng)用,在測(cè)流系統(tǒng)中主要采用一體化的 MBBR反應(yīng)池。ANITATMMox 可以采用純 MBBR 生物膜或者泥膜混合的 IFAS 形式。純生物膜工藝 AAOB菌在填料的最內(nèi)層,AOB 在外層;IFAS 工藝 AAOB主要在填料上,AOB 在懸浮污泥中。ANITATMMox主要控制的參數(shù)是 DO 含量,可以簡(jiǎn)單的將 DO 含量控制在一定范圍,或者通過氨氮去除率、硝酸鹽生成量和氨氮去除量的比來實(shí)時(shí)控制 DO 含量。純MBBR 系統(tǒng) DO 的質(zhì)量濃度控制在 0.5~1.5 mg/L,IFAS 系統(tǒng) DO 的質(zhì)量濃度控制在 0.3~0.8 mg/L。
6 主流工程化應(yīng)用
目前,厭氧氨氧化技術(shù)研究與工程應(yīng)用主要集中在工業(yè)廢水和污泥脫水液、垃圾滲濾液等領(lǐng)域,對(duì)于城市污水的應(yīng)用研究還非常有限。城鎮(zhèn)污水處理量大、但是氨氮含量和水溫相對(duì)較低、成分也更為復(fù)雜,開發(fā)適合城鎮(zhèn)污水的主流工藝具有重要的現(xiàn)實(shí)意義,同時(shí)也面臨著更大的挑戰(zhàn)。厭氧氨氧化技術(shù)用于城市污水仍具有許多較為突出的問題有待解決。例如,NOB 的有效抑制和 AAOB 的有效截留等。
Strass 污水處理廠先開啟了向主流厭氧氨氧化方向的邁進(jìn)。該廠將測(cè)流厭氧氨氧化系統(tǒng)剩余的AAOB 和 AOB 補(bǔ)充到主流,雖然實(shí)現(xiàn)了 AAOB 菌的富集,但是該廠的主流厭氧氨氧化效果仍不理想,主要是亞硝化過程不穩(wěn)定。實(shí)驗(yàn)顯示,NOB 菌能適應(yīng)低氧環(huán)境,因此低氧運(yùn)行并不成功,而間歇曝氣等相關(guān)抑制 NOB 的技術(shù)方法仍在探索中。
新加坡的樟宜污水廠率先在主流工藝中成功實(shí)現(xiàn)了穩(wěn)定的厭氧氨氧化,經(jīng)過核算,該廠主流自養(yǎng)脫氮過程對(duì) TN 的去除貢獻(xiàn)了 62%。該廠采用分段進(jìn)水多級(jí) A/O 工藝,系統(tǒng) HRT 為 5.8 h,污泥停留時(shí)間(SRT)為 5 d,缺氧區(qū)和好氧區(qū)各占 2.5 d,污水溫度全年保持在 28~32 ℃。該廠好氧區(qū)短程硝化作用很明顯,曝氣池亞硝酸鹽累積率為 76%,缺氧區(qū)內(nèi)氨氮和亞硝酸鹽氮也得到了同步去除。該廠較高的水溫是實(shí)現(xiàn)穩(wěn)定亞硝化的先天優(yōu)勢(shì),缺氧、好氧交替運(yùn)行和短泥齡的工藝特征是實(shí)現(xiàn)穩(wěn)定亞硝化的關(guān)鍵原因。
另外,針對(duì)厭氧氨氧化反應(yīng),研究人員提出了繁殖快、生長(zhǎng)周期短的 AAOB 也可以存在于泥齡較短的污水處理系統(tǒng),已有相關(guān)的試驗(yàn)證明了該結(jié)論。
7 結(jié)語
脫氮和能量自給已成為污水處理的 2 大目標(biāo)。傳統(tǒng)的生物脫氮過程在曝氣和混合過程中消耗了能量,在反硝化和 pH 控制過程中消耗了化學(xué)藥劑。南京反滲透純水處理設(shè)備而短程脫氮(包括短程硝化和厭氧氨氧化)在能耗和藥耗方面均具有較大的優(yōu)勢(shì)。經(jīng)過 20 多年的發(fā)展,短程脫氮已成功應(yīng)用于測(cè)流等高氨氮廢水的處理工程中。
但是作為一項(xiàng)新技術(shù),短程脫氮仍有許多問題尚未解決:
1)AAOB 對(duì)環(huán)境比較敏感,需確定厭氧氨氧化工程對(duì)不同成分廢水處理的適宜性,并提出避免有毒物質(zhì)對(duì) AAOB 產(chǎn)生抑制和毒害的方法;
2)AAOB 菌生長(zhǎng)緩慢,需要研究反應(yīng)器的快速啟動(dòng)方法,實(shí)現(xiàn) AAOB 的快速有效富集,縮短反應(yīng)器的啟動(dòng)時(shí)間;
3)主流厭氧氨氧化方面,需要研究提高工藝運(yùn)行的穩(wěn)定性,特別是提高亞硝化過程中亞硝酸鹽的累積率和 AAOB 在低溫條件下的活性等。
- 上一篇:膜工藝在印染廢水處理中的應(yīng)用 2019/9/16
- 下一篇:嘉興:統(tǒng)籌“五廢”治理項(xiàng)目建設(shè)、實(shí)現(xiàn)一般工業(yè)固廢全過程監(jiān)管 2019/9/12